Theor Appl Genet (2006) 112: 885-890
DOI 10.1007/s00122-005-0190-1

ORIGINAL PAPER

M. Arbelbide * R. Bernardo

Mixed-model QTL mapping for kernel hardness and dough strength

in bread wheat

Received: 23 May 2005/ Accepted: 30 November 2005 / Published online: 6 January 2006

© Springer-Verlag 2006

Abstract Plant breeding data comprise unbalanced
phenotypic data for inbreds with complex pedigrees. As
traditional methods to map quantitative trait loci (QTL)
cannot exploit plant breeding data, an alternative ap-
proach is QTL mapping via a mixed-model procedure.
Our objective was to validate mixed-model QTL map-
ping for self-pollinated crops by detecting QTL for
kernel hardness and dough strength from data in a bread
wheat (Triticum aestivum L.) breeding program. We
studied 80 parental and 373 experimental inbreds
genotyped for 65 simple sequence repeat (SSR) markers
and three candidate loci. The methodology involved
three steps: variance component estimation, single-
marker analyses, and a final multiple-marker analysis
with marker effects treated as fixed effects. Two QTLs
for kernel hardness were detected on chromosomes 1A
(close to candidate locus GluA3) and 5D (close to can-
didate locus Ha). Four QTLs were detected for dough
strength on chromosomes 1A, 1B, 1D, and 5B. Candi-
date gene GluAl, which was associated with dough
strength, was the only candidate locus found significant.
Results were consistent with previously reported mark-
ers and QTLs associated with kernel hardness and
dough strength. Unlike previous studies that have as-
sumed QTL effects as random, the assumption of fixed
marker effects identified the favorable marker alleles to
select for. We conclude that the detection of previously
mapped QTL validates the usefulness of mixed-model
QTL mapping in the context of a plant-breeding pro-
gram.
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Introduction

Improved bread quality is an important goal in wheat
(Triticum aestivum L.) breeding. Kernel hardness and
dough strength are two important traits affecting bread
quality. A better understanding of the genetic control of
these and other bread quality traits would enhance the
development of superior bread wheat cultivars.

At least 13 quantitative trait loci (QTL) and nine
candidate genes, mostly on chromosomes 1 and 5, have
been reported for kernel hardness and dough strength in
wheat (Singh and Shepherd 1988a, b; Branlard et al.
2001; Campbell et al. 1999, 2001; Perretant et al. 2000).
Studies to map these QTL have used designed mapping
populations, such as F,- or backcross-derived inbred
progenies or double haploids. Data routinely generated
in wheat breeding programs, however, have been un-
derutilized in gene mapping for two reasons. First,
wheat inbreds in a breeding program have complex
pedigrees, that is, inbreds are developed from different
crosses and have different levels of relatedness. Second,
plant breeding data are highly unbalanced, as inbreds
are evaluated in different sets of environments.

Mixed models can account for relationships among
inbreds and for unbalanced data, and can incorporate
marker data (Parisseaux and Bernardo 2004). A mixed-
model procedure represents an in-silico approach for
gene mapping because it exploits phenotypic and geno-
mic databases that are already available (Grupe et al.
2001). To avoid confusion with other in-silico mapping
procedures (e.g., for ESTs), we refer to this approach as
mixed-model QTL mapping (Arbelbide et al. 2006).
Mixed-model QTL mapping has been recently studied in
hybrid crops (Parisseaux and Bernardo 2004; Yu et al.
2005) and in self-pollinated crops (Arbelbide et al. 2006).
The power of mixed-model QTL mapping in hybrid and
self-pollinated crops was found comparable to that of
other QTL mapping methods. For self-pollinated crops,
power to detect QTL ranged from 0.4 to 47% depending
on population size, number of QTL, heritability of the
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trait, and significance thresholds used (Arbelbide et al.
2006).

Different mixed models have been proposed to map
QTLs in complex pedigrees. The random model ap-
proach requires a measure of whether QTL alleles in two
different inbreds are copies of the same ancestral QTL
allele, that is, identical by descent (Xu and Atchley
1995). Because QTL alleles are not observable, the
probability that they are identical by descent needs to be
estimated from information on linked markers and from
pedigree records. Crepieux et al. (2004) proposed an
identity by descent QTL mapping method using plant
breeding data for self-pollinated crops. Crepieux et al.
(2005) used this method to identify one QTL for kernel
hardness and two QTLs for dough strength from data
available in a wheat breeding program. The random
model approach estimates a variance component asso-
ciated with the QTL and identifies the marker interval
that most likely contains the QTL. This approach allows
a better evaluation of the overall breeding value of an
inbred and the identification of genomic regions asso-
ciated with the trait. However, it does not lead to esti-
mates of the mean effect associated with a specific
marker allele linked to a QTL. The random model ap-
proach therefore does not allow the identification of the
favorable QTL alleles for selection.

In contrast, considering markers as fixed effects al-
lows the estimation of an effect for each marker allele.
This inherently identifies the favorable marker alleles to
select for and the inbreds that most likely have the
favorable alleles at specific QTL. This approach is a first
step towards gene discovery, particularly if the markers
represent functionally neutral loci, such as simple se-
quence repeats (SSR). If the marker locus is itself a
candidate gene, the analysis would provide direct
information on the actual locus affecting a quantitative
trait.

In this study, we analyzed the data of Crepieux et al.
(2005) with a model assuming fixed marker effects rather
than random QTL effects. The objective was to validate
this mixed-model QTL mapping methodology for self-
pollinated crops by detecting QTL for kernel hardness
and dough strength from data in a wheat-breeding
program.

Materials and methods
Mapping population, pedigree, and marker data sets

We studied 80 parental and 373 experimental inbreds
from a Limagrain Genetics wheat breeding program
(Crepieux et al. 2005). The experimental inbreds were
derived from 158 F, populations among the 80 parents,
corresponding to an average of 2.4 experimental inbreds
per F, population. All inbreds were genotyped for 65
SSR markers corresponding to linkage groups 1A, 1B,
1D, 5A, 5B, and 5D. These linkage groups are known to
contain QTLs and candidate genes for bread quality

traits (Singh and Shepherd 1988a, b; Perretant et al.
2000). The inbreds were also genotyped for three bio-
chemical markers corresponding to candidate loci for
endosperm storage protein subunits GluAl (chromo-
some 1A), GluBI (chromosome 1B), and GluDI (chro-
mosome 1D) (Fig. 1; Singh and Shepherd 1988a, b). In
addition, the remaining chromosomes were genotyped
for 46 SSRs that were used to estimate genetic rela-
tionships based on genome-wide marker similarity.
Marker locations were obtained from previously pub-
lished maps (Crepieux 2004).

Phenotypic data

The 373 experimental inbreds were evaluated for kernel
hardness and dough strength in 2002 (Crepicux et al.
2005). A total of 339 inbreds were evaluated at a Li-
magrain Genetics breeding station near Clermont-Fer-
rand, France, and 62 inbreds were evaluated at
Chartainvilliers (close to Paris). There were 28 inbreds in
common between the two locations. Kernel hardness
was evaluated on a score of 1 to 100 (1=very soft,
100=very hard) by near-infrared reflectance spectros-
copy. Dough strength (W in J 10°%) was evaluated by
alveograph tests.

Mixed-model analysis

The data available for the mixed-model analysis con-
sisted of phenotypic data on the inbreds, marker infor-
mation on 114 markers for each inbred, and pedigree
records describing the relationship among inbreds. The
linear model was:

Yy=Xf+Zu+Tv+Wm-+e

where y = 401 x 1 vector of phenotypic observations; B
= 2 x 1 vector of fixed effects associated with locations;
u = 373 x 1 vector of random polygenic effects; v =
746 x 1 vector of random genotype by environment ef-
fects; m = m’ x 1 vector of fixed effects associated with
the alleles at each marker locus for a subset of m’
markers; e = 401 x 1 vector of residual effects associ-
ated with each observation; and X, Z, T, and W are
incidence matrices of ones and zeros relating y to B, u, v,
and m, respectively. A phenotypic observation consti-
tuted the mean kernel hardness or dough strength of an
inbred at a particular location. Polygenic effects corre-
sponded to the sum of genotypic effects not associated
with the marker or markers being considered in the
model. The random vectors u, v, and e had means of
zero and variances Var(u) = GVg, Var(v) = G,VgE,
and Var(e) = RVR. Gy is the additive relationship ma-
trix, and Vg is the additive variance at the polygenic
effects; G, is the additive genotype by environment
relationship matrix, and Vgg is the genotype by envi-
ronment genetic variance at the polygenic effects; R is a
401 x 401 diagonal matrix with elements equal to the
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Fig. 1 Genetic map of 65 SSR loci and three candidate loci on
homoeologous linkage groups 1 and 5 of wheat (adapted from
Crepieux 2004). Significant markers are indicated in bold and

inverse of the number of locations of a particular inbred,
and Vg is the residual variance. The relationship matrix
G; comprised twice the coefficient of coancestry among
inbreds. The coefficients of coancestry were estimated
using the tabular method (Emik and Terrill 1949).
Parental contributions were estimated based on marker
similarity between a parent and a derived inbred, ad-
justed by the proportion of the marker similarity be-
tween the parents as described by Bernardo et al. (2000).
The coefficient of coancestry between inbreds ranged
from 0.18 to 0.96, with a mean of 0.47. The relationship
matrix G, was an identity matrix, assuming that geno-
type by environment effects were uncorrelated among
inbreds and locations. Marker effects were considered
fixed as proposed by Kennedy et al. (1992). Mixed-
model equations were solved as described by Arbelbide
et al. (2006) to obtain BLUE values of fixed effects p and
m, and BLUP values of random effects u and v. Confi-
dence intervals (P < 0.05) were constructed for m, where
Var(m) = C); Vg as described by Henderson (1984).
Restricted maximum likelihood estimates of Vx, Vg,
and Vgg were obtained as described by Henderson
(1984, p. 200).

Data analysis

Data analysis comprised three steps as described by
Arbelbide et al. (2006): variance component estima-
tion, single-marker analyses at P <0.05, and multiple-
marker analysis at P<0.001. If adjacent markers were
significant in the single-marker analyses, only the
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underlined. QTL reported by Crepieux (2004) are indicated by
sidebars (KH kernel hardness; DS dough strength). Loci previously
reported to have significant effects are indicated by an asterisk

marker with the smallest P-value was selected to re-
duce multicollinearity in the model. Marker selection
in the multiple-marker model was conducted by
backwards elimination, and a stringent significance
level of P<0.001 was used to control the false dis-
covery rate for QTL (Bernardo 2004). Equations were
solved to obtain new estimates of Vg, Vgg, and Vg,
and BLUE values of marker effects. Assuming only
additive genetic effects, the marker effects were esti-
mated as the maximum difference between marker al-
lele effects (Parisseaux and Bernardo 2004). We
considered this criterion meaningful to plant breeders,
who are most interested in the extremes in a given
population. Broad-sense heritability was estimated as
H = Vg/Vp, where Vp is the phenotypic variance on
an entry mean basis.

Results

The average number of alleles per marker was 5.6 (Ta-
ble 1), with a minimum of two and a maximum of 19
alleles per marker. The number of alleles per candidate
locus was three for GluAl, eight for GluB1, and three for
GluD1. The map distance between a candidate locus and
its nearest SSR marker was 34 cM (Fig. 1). Kernel
hardness had a mean score of 69.8, and ranged from 15.0
to 119.0 with a standard deviation of 17.8. Dough
strength had a mean of 215.9 J 107*, and ranged from
53.0 to 541.0 with a standard deviation of 84.6. Broad
sense heritability was 0.82 and 0.62 for kernel hardness
and dough strength, respectively.
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Table 1 Number of SSR

markers, average number of Chromosome Length Number Average number Average distance
alleles per marker, and average (cM) of markers of alleles per marker between markers (cM)
distance among markers for
wheat linkage groups 1 and 5 1A 150 10 5.8 15.0
(adapted from Crepieux 2004) 1B 141 12 7.1 11.8

1D 145 13 4.1 11.2

S5A 165 11 6.1 15.0

5B 117 11 5.5 10.6

5D 207 11 5.1 18.8

Total 925 68 5.6 13.7

For kernel hardness, a total of five markers were
found significant in the single-marker analyses at
P<0.05: Xgpw2246 and Xcfa2153 on chromosome 1A;
GluDl on chromosome 1D; and Xgwmi90 and
Xgwm272 on chromosome 5D. Only two markers re-
mained significant after backwards elimination in the
multiple-marker analysis: Xc¢fa2153 and Xgwmli90
(Fig. 1, Table 2). Both markers had similar estimated
effects. Candidate locus GluD1 was therefore significant
(P<0.02) only in the single-marker analyses, whereas
candidate loci GluAl and GluBI were not significant in
any step.

For dough strength, a total of 20 markers were found
significant in the single-marker analyses: Xgwml64,
Xgwm357, GluAl, Xcfa2129, and Xcfa2219 on chromo-
some 1A; Xgpwll70, Xgwm264, GluBl, Xbarc061, and
Xwmc044 on chromosome 1B; Xcfd32, GluDl,
Xgwm642, Xcfd48, Xcfd27, Xgdmli26, and Xcfd63 on
chromosome 1D; Xbarcll7 on chromosome 5A;
Xgwm234 on chromosome 5B; and Xgpw323 on chro-
mosome 5SD. Only four of these markers remained sig-
nificant in the multiple-marker analysis: GluAdl,
Xbarc061, Xgwm642, and Xgwm234 (Fig. 1, Table 2).
The estimate of marker effects was highest for Xbarc061,
lowest for GluAl, and intermediate for Xgwm642 and
Xgwm234. The three candidate loci therefore showed
highly significant associations with dough strength in the
single-marker analyses, but only GluAl was significant
in the multiple-marker model.

Discussion

In this study, 373 inbreds developed from 158 different
crosses in a wheat-breeding program were used to vali-
date candidate loci and identify SSR markers for kernel
hardness and dough strength. The methodology

involved three steps: variance component estimation;
single-marker analyses at P <0.05; and multiple-marker
analysis at P<0.001 with selected markers found sig-
nificant in the single-marker analyses. As we discussed in
a companion article (Arbelbide et al. 2006), single-
marker analyses prior to multiple-marker analyses pre-
vented overparameterization in the model (i.e., the
number of marker effects exceeding the number of
equations). The mixed-model procedure easily incorpo-
rated information from phenotypic, marker and pedi-
gree records. Despite the relatively small population size,
a total of six different markers were identified as asso-
ciated with kernel hardness or dough strength. The
comparisons below show that these results were consis-
tent with those from previously reported experiments.

Two markers were found associated with kernel
hardness. Of these, Xcfa2153 showed the stronger evi-
dence for association. This marker has not been previ-
ously associated with kernel hardness, but it has been
reported to be located close to the end of the long arm of
chromosome 1A (Paillard et al. 2003), where candidate
locus GluA3 has also been reported (Somers et al. 2004).
We speculate that variation for kernel hardness due to
GluA3 was captured by a significant association with
marker Xcfa2l53, because Xcfa2153 is 1-7 cM from the
end of chromosome 1A (Paillard et al. 2003). Marker
gpw2246, which was reported at the same location as
GluA3, was found significant only in the single-marker
analyses. Likewise, candidate locus GluDI was signifi-
cant (P <0.05) in the single-marker analyses but not in
the multiple-marker model.

We also found marker Xgwmli90 significant for ker-
nel hardness. This locus has been previously mapped to
the end of chromosome 5D (Roéder et al. 1998; Paillard
et al. 2003; Somers et al. 2004). Despite not having been
previously reported as associated with kernel hardness,
Xgwml190 has been mapped very close to the mtal0

Table 2 Significant marker—

trait associations from multiple- Marker Chromosome Number Additive effect” P-value
marker models for kernel of alleles
hardness and dough strength in
wheat Kernel hardness
Xcfa2l53 1A 10 29.8 (23.9, 35.7)° 4.0E-05
Xgwml190 5D 5 35.2(27.2,43.2) 6.2E-04
Dough strength
) ) ) GluAdl 1A 3 12.2 (3.7, 20.7) 6.5E-08
*Maximum difference between Xbarc061 1B 8 126.6 (114.3, 138.9) 5.8E-12
effects of marker alleles Xgwm642 1D 4 75.8 (66.0, 85.6) 3.1E-17
95% confidence intervals in Xgwm234 5B 7 47.6 (31.7, 61.5) 2.9E-04

parentheses




locus, which has been reported strongly associated with
kernel hardness and linked to grain hardness locus Ha
(Perretant et al. 2000; Fig. 1). Marker Xgwm190 had the
highest estimated effect, which was consistent with re-
sults reported for mtal0 and other loci linked to the
major locus Ha (Sourdille et al. 1996; Perretant et al.
2000; Campbell et al. 2001; Charmet et al. 2001).

For dough strength, candidate locus GluAl showed
strong association (Table 2, Fig. 1). This result was in
agreement with those of Perretant et al. (2000) who re-
ported association of a nearby locus, fba92. Campbell
et al. (2001) found similar results where locus GluA I was
associated with mixograph peak height, a dough
strength parameter that describes the torque applied to
the dough sample at maximum resistance. Candidate
locus GluBI was selected in the single-marker analyses
but eliminated in the multiple-marker analysis. Marker
Xbarc061 on chromosome 1B showed strong association
with the trait and had the highest estimated effect.
Marker Xbarc061 is located near the proximal end of
chromosome 1BL (Crepicux et al. 2005). Crepieux et al.
(2005) reported a QTL for dough strength in the interval
between Xbarc061 and GluBI1. Results showed that when
Xbarc061 was in the model, candidate locus GluBI was
no longer significant. We speculate that Xbarc061 ac-
counted for variation due to the joint effects of GluBI
and other possible QTL in the region.

Marker Xgwm642 on chromosome 1DL had an
intermediate effect on dough strength but had the
strongest association with the trait. It is located at
2.5 cM from the candidate locus G/uD1, a grain protein
storage gene (Singh and Shepherd 1988a, b; Boeuf et al.
2003; Fig. 1). GluD1 has been previously associated with
mixograph peak time, which measures time to maximum
dough resistance (Campbell et al. 2001). In this study,
GluD1 was found significant in the single-marker anal-
yses only, and was not as strongly associated with dough
strength as marker Xgwm642. In contrast, Perretant
et al. (2000) reported a QTL for dough strength asso-
ciated with locus mtal0 (GluD3), which is located near
the end of chromosome 5DS and (as previously men-
tioned) has been associated with kernel hardness.
Perretant et al. (2000) did not find a significant effect for
GluD1 due to lack of polymorphism among the parental
lines used in their experiment.

Marker Xgwm234 on chromosome 5B was found
significantly associated with dough strength. This mar-
ker has been reported at the 0 cM position (Rdder et al.
1998; Paillard et al. 2003; Crepieux et al. 2005) and at
the 38 ¢cM position (Somers et al. 2004) of chromosome
SBS. These results are in agreement with Zanetti et al.
(2001) who reported a QTL for dough extensibility at
the end of chromosome 5BS, and a minor QTL for
dough strength closer to the centromere.

Branlard et al. (2001) and Perretant et al. (2000) re-
ported correlations between kernel hardness and dough
strength. In this study the phenotypic correlation be-
tween the two traits was 0.45, but QTLs associated with
both the traits were found only in the single-marker
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analyses (data not shown). Crepicux et al. (2005) re-
ported a QTL for kernel hardness and dough strength in
the interval flanked by markers GluD1 and Xgwm642 on
chromosome 1D. This QTL was at the 76 cM position.
In this study, candidate locus G/uDI had only weak
association with kernel hardness. Also, Crepieux et al.
(2005) reported a QTL for kernel hardness at the 3 cM
position (in the interval flanked by markers gpw326 and
Xgwml190) on chromosome 5D. Marker Xgwml190 was
identified as having a significant effect. Results agree
with those of Crepieux et al. (2005) who used a random
effects model for QTLs. The model considered marker
effects as fixed and was able to identify the same markers
as those reported as flanking markers by Crepieux et al.
(2005), plus some others in regions known to be asso-
ciated with either kernel hardness or dough strength.

In this study three candidate loci were tested for
association with kernel hardness and dough strength.
However, only one of these three candidate loci was
found significant for either trait. In contrast, adjacent
SSR loci were found significant. The reasons for the
significance of adjacent SSR loci rather than of the
candidate loci themselves are unknown. We speculate,
however, that these SSR markers could have detected
the effects of unknown QTL close to these known can-
didate genes, especially that families of similar genes are
known to be found in clusters in the genome (Gill et al.
19964, b; Dilbirligi et al. 2004). Further analysis with a
larger population and with a higher density of markers
in these genomic regions would be needed to confirm
this speculation.

Previous experiments to detect QTL for kernel
hardness and dough strength have used parental inbreds
with contrasting phenotypes. Such experiments maxi-
mize variation for the trait and maximize the chance of
finding significant marker—trait associations. However,
given the nature of the crosses, results for discovered
QTLs may not necessarily apply to elite breeding pop-
ulations. Such wide crosses are unlikely in applied
wheat-breeding programs, where major genes are likely
to have become fixed in elite germplasm and only minor,
less heritable QTL would remain segregating. In con-
trast, mixed-model QTL mapping utilizes elite inbreds
developed in the breeding program to identify marker—
trait associations. Results from this approach would
therefore be directly applicable to the breeding program.
Empirical studies are needed to determine the level of
kernel hardness and dough strength that can be attained
by pyramiding the favorable QTL alleles in a single
wheat inbred. Such empirical studies would also reveal
any epistasis, influence of genetic background, unfa-
vorable linkage drag, or pleiotropy among the favorable
QTL alleles.

Plant breeding data comprise massive phenotypic and
genotypic information generated through heavy invest-
ments in cultivar development for many years. This
implies that breeding data consist of many generations
with significant accumulation of historical recombinants
and a large number of progenies. The use of dense
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marker maps would enable higher resolution in the QTL
mapping analysis. Once QTL regions are identified,
mixed-model QTL mapping can easily incorporate sin-
gle-nucleotide polymorphism (SNP) data to dissect
candidate genes in large populations. By using a fixed
effects approach, SNP alleles or haplotypes with favor-
able effects can be directly identified. This comprehen-
sive approach to QTL mapping enables the joint
exploitation of plant breeding data and genomic re-
sources, resulting in a better leverage of resources in-
vested in cultivar development and genomics research.
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